
Systems and Energy Analysis

Post-Combustion Capture Analysis Update

August 21, 2017

Presentation Outline

- SEA Organization & Purpose
- Process Analysis
- Markets & Infrastructure
- Tools

• SEA Organization & Purpose

- Process Analysis
- Markets & Infrastructure
- Tools

NETL Core Competencies

Computational Science & Engineering	Materials Engineering & Manufacturing	Geological & Environmental Systems	Energy Conversion S Engineering	ystems Engineering & Analysis	gProgram Execution & Integration
 High Performance Computing Data Analytics 	 Structural & Functional Design, Synthesis, & Performance 	 Air, Water & Geology Understanding & Mitigation 	Component & DeviceDesign & Validation	 Process & System Optimization, Validation, & Economics 	 Technical Project Management Market & Regulatory Analysis

Effective Resource Development • Efficient Energy Conversion • Environmental Sustainability

Systems Engineering & Analysis (SEA)

Teams and Scope

Energy Process Analysis

Energy Process Design, Analysis, and Cost Estimation

- Plant-level modeling, performance assessment
- Cost estimation for plant-level systems
- General plant-level technology evaluation and support

Advanced Technology Design & Cost Estimation

Energy Systems Analysis

Resource Availability and Cost Modeling

- CO₂ storage (saline and EOR)
- Fossil fuel extraction
- Rare earth elements
- General subsurface technology evaluation and support

Environmental Life Cycle Analysis

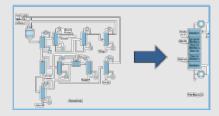
Energy Markets Analysis

Energy Economy Modeling and Impact Assessment

- Enhanced fossil energy representation
- Multi-model scenario/policy analysis
- Infrastructure, energy-water

- Economic impact assessment^M
- General regulatory, market and financial expertise

Process Systems Engineering Research

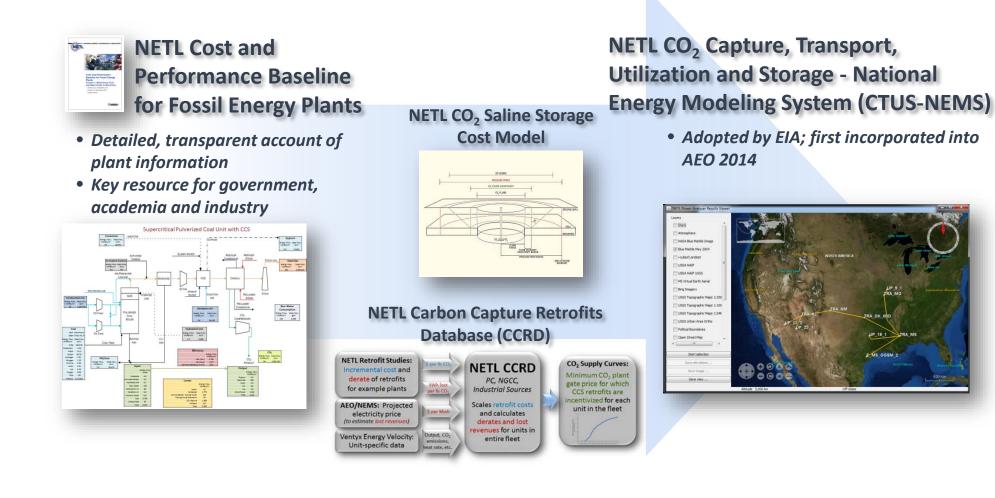

ΔΤΙΟΝΔΙ

TECHNOLOGY

- Process synthesis, design, optimization, intensification
- Steady state and dynamic process model development
- Uncertainty quantification
- Advanced process control

Design, optimization, and modeling framework to be expanded to all SEA "systems"

Advanced Energy Systems through Process Systems Engineering



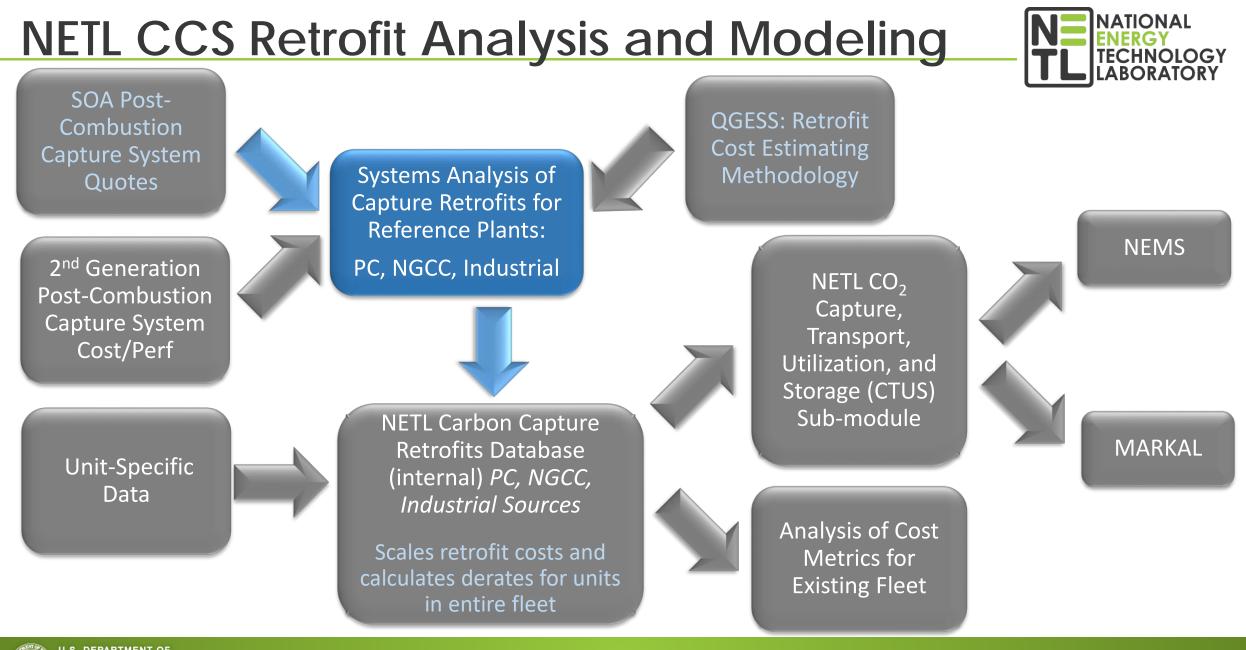
Systems Engineering and Analysis

Work Products and Tools of Note

- SEA Organization & Purpose
- Process Analysis
- Markets & Infrastructure
- Tools

Cost and Performance Baseline for Fossil Energy Plants

Volume	Revision	Date	Fuel Types	Technology	Notes
1a	3	July 2015	Bituminous Coal, Natural Gas	PC, NGCC with and without CO ₂ Capture	
1b	2b	July 2015	Bituminous Coal	IGCC with and without CO ₂ capture	Year dollar update only
1 Supplement	0	June 2015	Bituminous Coal	PC and IGCC Partial CO ₂ Capture	Sensitivity to CO ₂ capture levels
3	0	Sept 2011	Sub-bituminous & Lignite Coal, Natural Gas	PC, IGCC, & NGCC with and without CO ₂ capture	



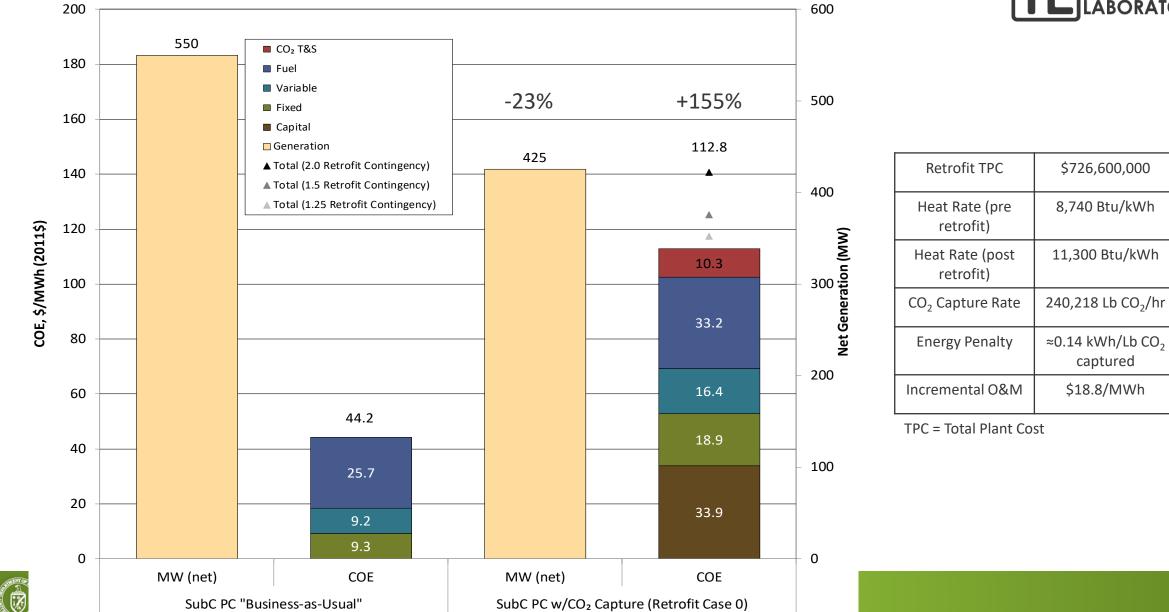
Revision 4 Implementation

- Layout
 - Volume 1a and 1b being combined into Revision 4
- Performance
 - GT performance is being updated with vendor information, adding H-Class NGCC technology
 - CO₂ Capture system quotes on performance and economics are being updated
 - Emissions Limitations
 - Incorporating Effluent Limitation Guidelines (ELG) compliance (Zero Liquid Discharge [ZLD])
 - Adjusting operating conditions of CO₂ compression system
- Economics
 - Significant updates to capital costs for all cases is underway, with year dollar updates to 2016 or 2017
 - Updating feedstock prices, T&S costs, capital charge factor
 - Revisiting finance structure
- Final Report Due in mid-to-late 2018

U.S. DEPARTMENT OF ENERGY

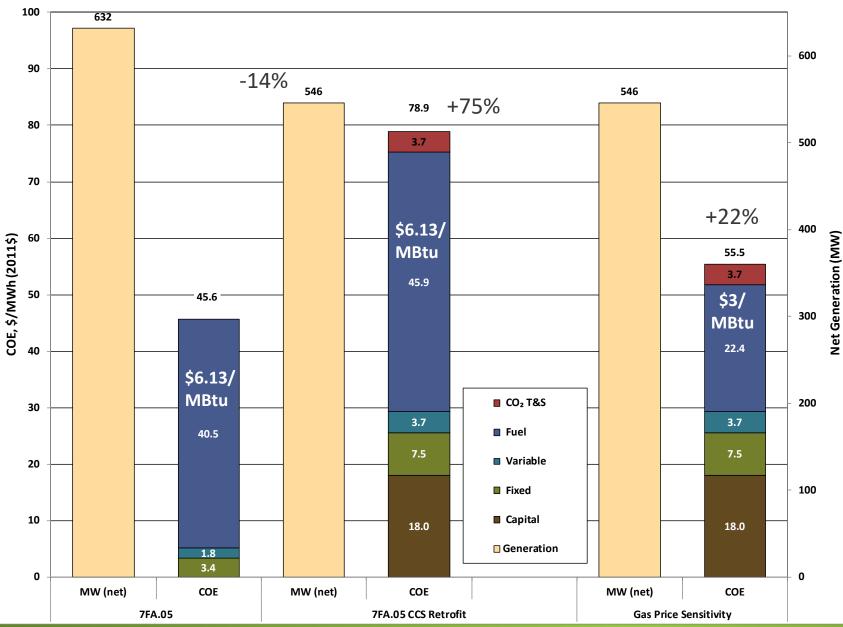
Carbon Capture Retrofit Modeling Overview

- 264 GW of existing coal and 242 GW of existing NGCC capacity in U.S.*
- CO₂ also available for capture from industrial sources; publicly available information from EPA's Greenhouse Gas Reporting Program
- Access to heat rate, nameplate capacity, O&M costs, CO₂ emissions, pollution controls, online date, other relevant data from which to estimate CCS retrofit costs
- Based on similar results of NETL studies, employ a factored approach to existing fleet to estimate cost, performance impact of CCS retrofits
- Determine sensitivity to capacity factor or financing assumptions, evaluate impact of advanced CCS R&D, assess benefits of EOR opportunities



• **PC**

- "Eliminating the Derate of Carbon Capture Retrofits Study Update," Late 2017
- NGCC
 - "Cost and Performance of Retrofitting NGCC Units for Carbon Capture," Late 2017
- Industrial
 - "Cost of Capturing CO₂ from Industrial Sources," DOE/NETL-2013/1602, January 2014



Subcritical PC Retrofit Results

NATIONAL ENERGY TECHNOLOGY LABORATORY

NGCC Retrofit Results

• NGCC cost of electricity highly sensitive to gas price!

\$647,300,000		
6,629 Btu/kWh		
7,466 Btu/kWh		
445,486 Lb CO ₂ /hr		
≈0.19 kWh/Lb CO ₂ captured		
\$6.15/MWh		

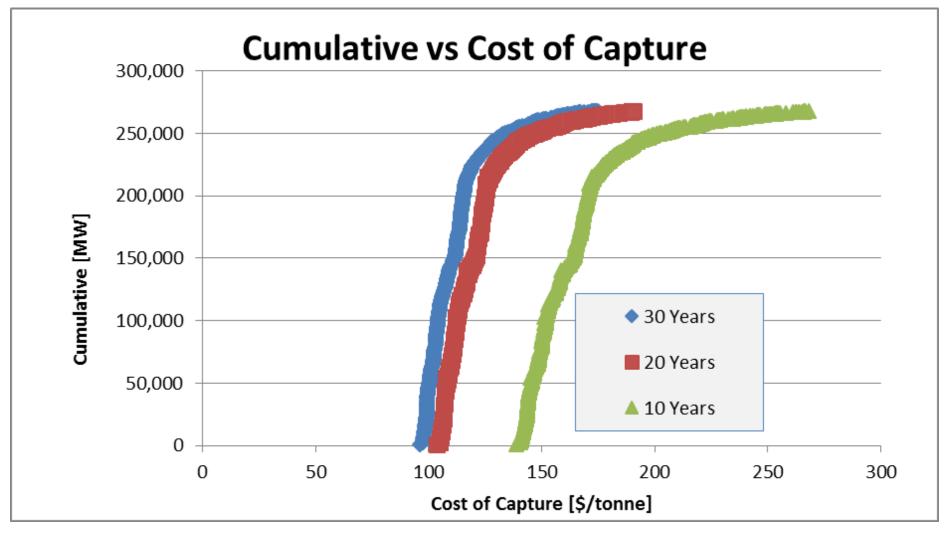
TPC = Total Plant Cost

CO₂ Capture Retrofit Difficulty Factor

- Power plant retrofits typically space constrained
- A retrofit "difficulty factor" can be applied to capital costs to reflect sitespecific challenges
- Factor only applied to capex, so impact on total cost of electricity can be easily assessed
- NETL Quality Guidelines for Energy System Studies "Estimating Plant Costs Using Retrofit Difficulty Factors*"

Incidental Retrofit Project Costs

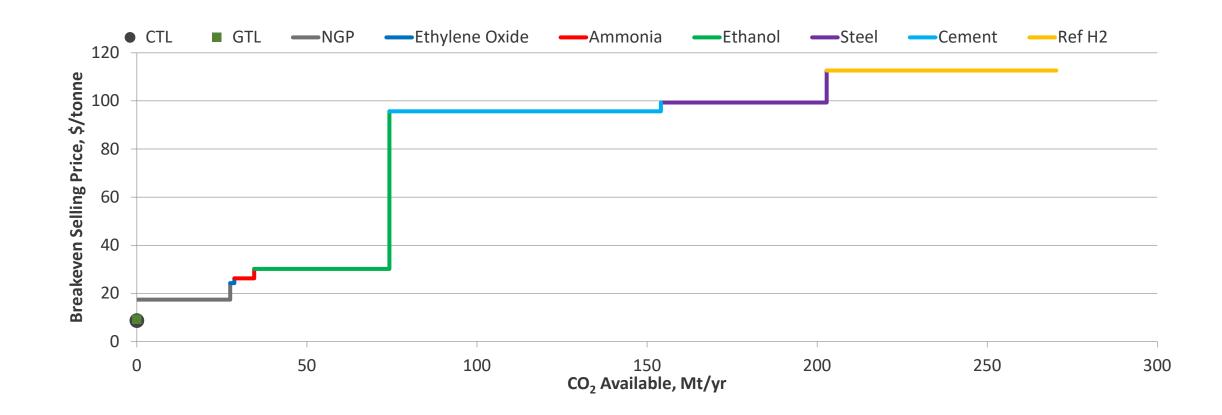
- Existing coal units may require other environmental upgrades when adding CO₂ capture equipment
- Cost for NOx (SCR), SO₂ (FGD) upgrades should be considered to reflect all-in project cost
- CCS retrofit is a long-term bet on plant viability, may also want to consider cost for conversion from wet to dry cooling in certain regions (50% water consumption increase when capturing 90% CO_2)


- NETL studies typically assume 30 year economic life (reflected in capital charge factor)
- What is expected remaining useful life of an existing coal unit retrofitted with CCS? Majority of existing coal fleet built in the 1970's.
- Financing assumptions needed to reflect scenarios shorter than 30-year default

Retrofit Financing Considerations

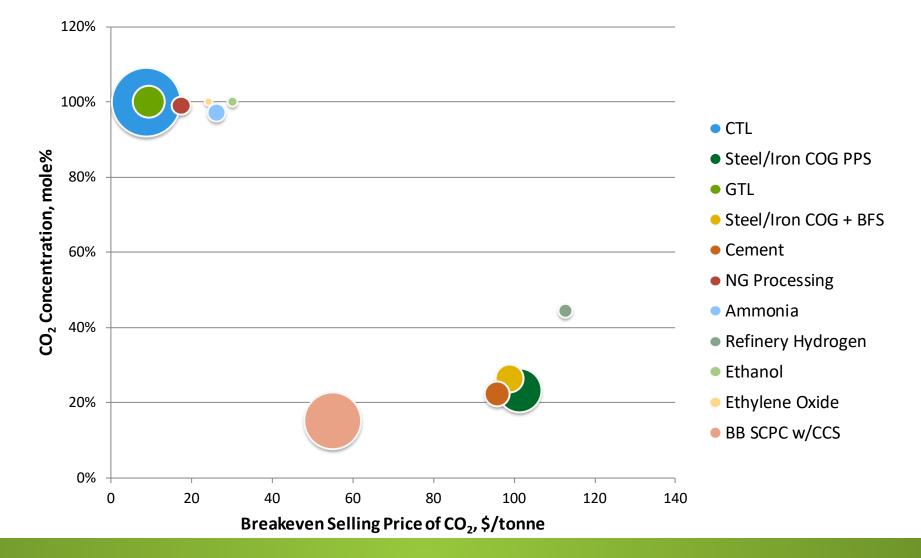
Impact of economic life on cost results

Industrial Source CO₂ Capture


Industrial Process	Reference Plant Capacity	CO₂ Source Stream	CO ₂ to Product Ratio (tonne CO ₂ /tonne Product)	Source Stream CO ₂ Concentra- tion (mol%)	Source Stream CO ₂ Partial Pressure (psia)	CO ₂ Available for Capture (M tonnes CO ₂ /year)		Breakeven Cost of Capturing CO ₂
						Reference Plant	All U.S. sources	(\$/tonne CO ₂)
High Purity Sources								
Ethanol	50 M gal/year	Distillation gas	0.96	100	18.4	0.14	40	30
Ammonia	907,000 tonnes/year	Stripping vent	1.9	99	22.8	0.458	6	27
Natural Gas Processing	500 MMscf/d	CO ₂ vent	N/A ¹	99	23.3	0.649	27	18
Ethylene Oxide	364,500 tonnes/year	AGR product stream	0.33	100	43.5	0.122	1	25
Coal-to-Liquids (CTL)	50,000 bbl/d	AGR product stream	N/A ²	100	265	8.74	-	9
Gas-to-Liquids (GTL)	50,000 bbl/d	AGR product stream	N/A ²	100	265	1.86	-	9
			Low Purity	Sources				
Refinery Hydrogen	59,000 tonnes/year	PSA tail gas	10.5	44.5	8.9	0.274	68	118
Iron/Steel	2.54 M tonnes/year	Plant Total COG PPS COG/BFG ³	2.2	N/A 23.2 26.4	N/A 3.4 3.9	3.9 2.75 1.16	49	99 99 101
Cement SCR/FGD Sensitivity	992,500 tonnes/year	Kiln Off-gas	1.2	22.4	3.3	1.14	80	100 <i>12</i> 7
Coal-fired power plants	550 MW	Flue Gas	NA	13.5	2.0	4.13	2,5454	77 ⁵⁶

Capturing CO₂ from Industrial Sources

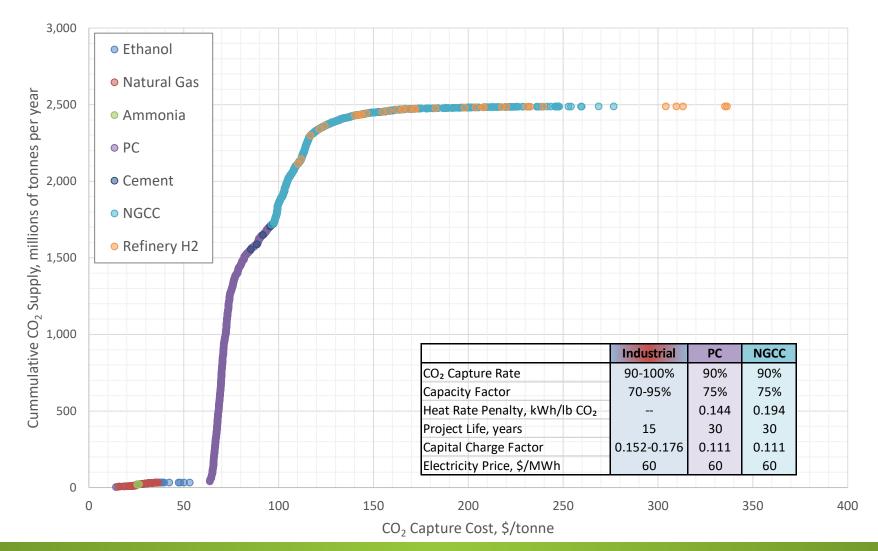
Incremental CO₂ Supply versus Breakeven Selling Price



Capturing CO₂ from Industrial Sources

Breakeven Selling Price as a Function of CO₂ Concentration

Industrial Source Retrofit Methodology



- Facility data for industrial sources based on EPA's Greenhouse Gas Reporting Program¹ and FLIGHT data²
- Plant capacity in report based on typical sizes, cost and performance postretrofit based on source report, and applied using a scaled approach
- Key parameters of interest include payback period, financing structure, supplemental power or natural gas price

Cumulative CO₂ Supply

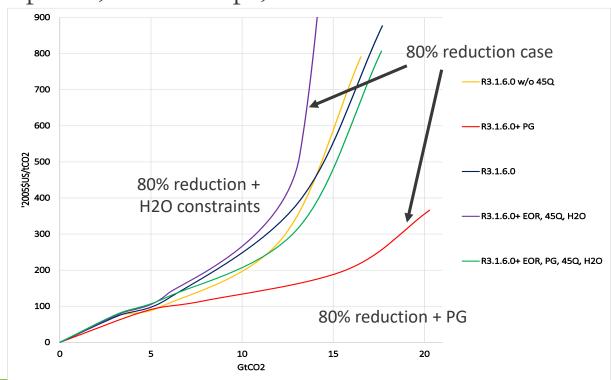
Large capacity available, at increasing cost of capture

- Finalization of existing coal, NGCC retrofit source reports
- Continued development of internal version of retrofit model
- Development of public version of retrofit model

Presentation Outline

- SEA Organization & Purpose
- Process Analysis
- Markets & Infrastructure
- Tools

NEMS Modeling


National Energy Modeling System

- Modeling system used to create EIA Annual Energy Outlook
 - NETL aids in development of carbon capture related modules and utilizes NEMS for situational analysis
 - 2017 analyses have included carbon taxes, gas prices, carbon caps, and effects of achieving CCS program goals

• Brief Summary Results

- Highest cumulative CO₂ reduction at lowest cost in scenario with CCS program goals
- Water constraints increase costs in all scenarios
- NGCC with carbon capture must be addressed

• Scenario Analyses

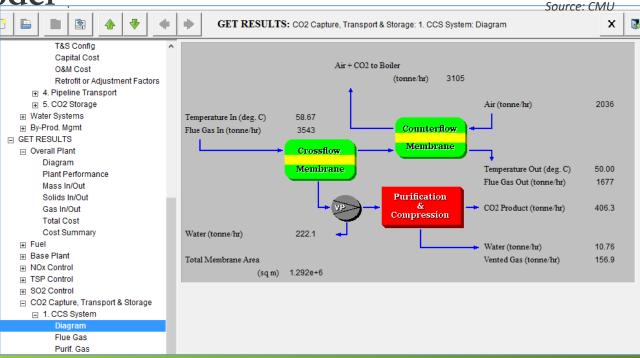
- Evaluate retrofit/repowering potential for advanced technologies
- Utilize PROMOD and cashflow models
 - NETL evaluates effect of incentives and market conditions on technology dispatch (capacity factors)

• Infrastructure Analysis

- Currently evaluating CO₂ purity requirements for pipeline/storage
- Deliverable Update to CO₂ purity QGESS

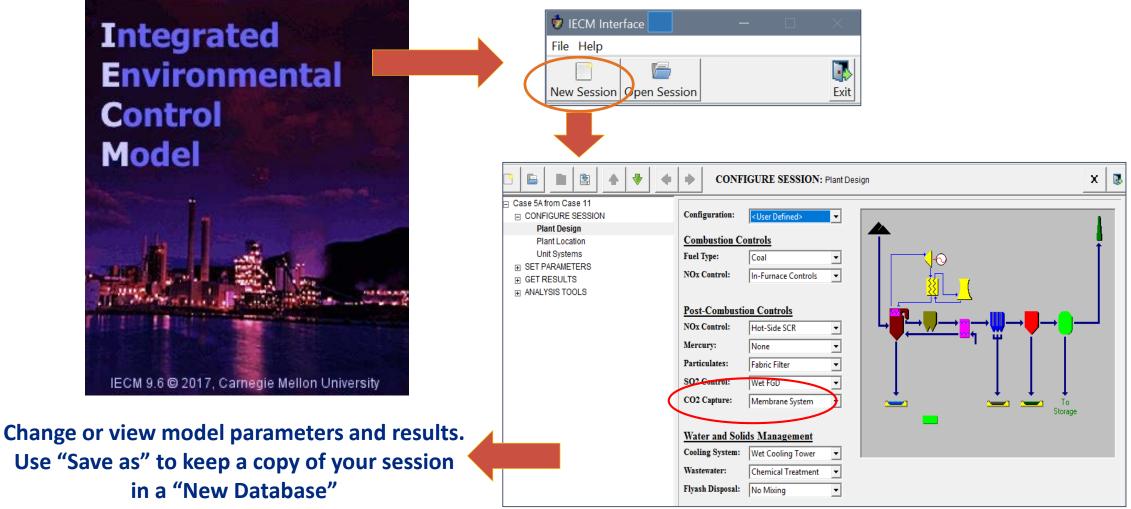
Presentation Outline

- SEA Organization & Purpose
- Process Analysis
- Markets & Infrastructure
- Tools



IECM Updates

New Cases/Models


- Developed and Distributed by Carnegie Mellon University
- Advanced Membrane-based CO₂ Capture System Model
 - Incorporates air sweep option
- Enhanced CO₂ Purification Unit Model
- IECM 9.6 Released May 2017

Implementation in IECM

Thank You

